

Muhammad Moazzam Khan Technical Advisor (Marine Fisheries) WWF-Pakistan

PHYSICAL AND ECOLOGICAL IMPACTS OF CLIMATE CHANGE RELEVANT TO MARINE AND INLAND FISHERIES

Global mean temperatures are rising faster with time

Mean sea level rise at Arabian Sea

It is found in coastal waters usually forming small schools. It is primarily caught by gillnet, however, at time it is harvested by purse sein Saltwater intrusion in the estuaries

PAKISTAN

Arabian Sea

Tropical Cyclone 02A

NOAA-14 AVHRR Colorized Multi-channel Composite May 20, 1999 @ 10:27 UTC

Tropical Cyclones

Tracks vs. Inensity 1985-2005

Tropical Cyclone Intensity Classification

Category	Wind speed (3-min) ≤27 (≤51)		
Depression			
Deep Depression	28–33 (52–61)		
Cyclonic Storm	34–47 (62–87)		
Severe Cyclonic Storm	48–63 (88–117)		
Very Severe Cyclonic Storm	64–119 (118–221)		
Super Cyclonic Storm	≥120 (≥222)		

2007 N. Ind Ocean Tropical Cyclones

Tropical Cyclones	Cat.	Max 6-hr Sustained (Kt)	Max Gust 6-hr (Kt)	Landfall	
Akash	1	65	80	05/15 BD & MYN	
Gonu	5	140	170	06/06 Oman	
Yemyin	TS	50	65	06/26 Pakistan	
04B	TS	45	55		
05B	TS	45	55		
Sidr	4	135	165	11/15 BD	

Satellite Image + Observed Track (Tropical Cyclone Gonu)

4-5 June 2007

Observed Track

CYCLONE PHET

Iran

Persian Gulf (Arabian Gulf)

Saudi Arabia United Arab Emirates Pakistan

Arabian Sea

Oman

Damage in Oman

RAIN IN BALOCHISTAN BY PHET

AREA	Rain (in mm)
GWADAR	370
JIWANI	208
PASNI	139

Cyclone (FHET) hit Makran Coast, PWP-MCWC.

DEATH TOLL BY CYCLONE PHET

DEATH TOLL					
PAKISTAN	15				
OMAN	24				
INDIA	05				
TOTAL	44				

Tropical Cyclone Yemyin

Rainfall Rate

Observed Track

Yemyin before Landfall

JRA-25 Analysis

Wind speed (m/s) + direction at 700 hPa 00 UTC 26-06-2007

Air Temp & Wind Vertical Profile 64E 00 UTC 26-06-2007

Time Series (1985-2007) for SST Arabian Sea & Bay of Bengal

Comparison of Sea Surface Temperature for Bay of Bengal and Arabian Sea (2000 - 2007)

Arabian sea is showing higher SST values compared to Bay of Bengal since 2000

Weather Related Changes in Arabian Sea

- Higher SST in North Arabian sea is giving rise to formation of more frequent and intense Cyclones
- Previously storms used to re-curve towards Rann of Kutch
- Shift of track, under climate change, towards west indicates that Sindh-Makran coast may be affected in future
- Yemyin landfall at Pasni is the recent example
- Sea Level Rise will result in more destructive storm surges

		Area Affected by Sea Intrusion (ha)			
DISTRICT	AREA				
TALUKA	(ha)	Fully Eroded	Partially Eroded	Total	Not Eroded
Thatta	1,324,606	348,093	186,400	534,493	790,113
Shah Bundar	297,707	205,940	35,055	240,995	56,712
Ghora Bari	94,686	2,986	9,867	12,853	81,833
Kharo Chan	192,902	39,147	8,944	48,091	144,811
Mirpur Sakro	300,629	4,503	20,057	24,560	276,069
Jati	357,215	49,411	112,069	161,480	195,735
Keti Bundar	81,467	46,106	408	46,514	34,953
Badin	323,749	14,595	17,978	32,573	<mark>291,176</mark>
Golarchi	179,798	2,764	9,736	12,500	167,298
Badin	143,951	11,831	8,242	20,073	123,878
Tabal		202 602	204 270		1 054 000

Reconstructed catch data from 1950-2010

Reconstructed catch data from 1950-2010

FLEET SIZE

FLEET SIZE

2

18,000		11	I
10,000	FLEET SIZE		
14,000			
12,000			
10,000			
8,000			
6,000			
4,000			
2,000			

Potential threats of Climate Change on Fisheries

- Higher seawater temperature
- Sea level rise
- Increase in frequency/intensity of cyclone
- Changes in precipitation quantity, location and timings
- I-Nino-Southern Oscillation (ENSO)

FACTORS	EFFECTS	IMPLICATIONS
Higher estuarine	Increased stratification	Reduced fish stocks
temperature	Raised metabolic rates. Enhanced primary production	Enhanced fish stocks and aquaculture productivity.
	Shift in location and size of the potential range of some species	Potential loss of species or alteration in species composition.
	Reduced water quality	Altered stocks and species composition
	Changes in timing and success of migration, spawning and peak abundance	Potential loss species or shift in composition

Higher seawater temperatures (0.6-0.7°C increase in tropical regions)

FACTORS	EFFECTS	IMPLICATIONS
Changes in sea surface temperature	More frequent HAB. Less dissolved oxygen. Altered ecosystems. Altered plankton composition	Impact on abundance and species composition of fish stocks
	Enhanced primary productivity	Changes species composition
	Longer growing season. Lower mortality in winters. Enhanced growth rates	Increased production.

Higher seawater temperatures (0.6-0.7°C increase in tropical regions)

FACTORS	EFFECTS	IMPLICATIONS
Changes in sea surface temperature	Changes in timing and success of migrations, spawning and peak abundance.	Potential loss of species or shift in composition
	Change in location and size of suitable range for particular species	Offset species composition
	Damage to coral reefs and other fragile ecosystem	Reduced recruitment and habitat damage

FACTORS	EFFECTS	IMPLICATIONS
Changes in precipitation, quantity, location and timing.	Changes in fish migration and recruitment patterns as well as in recruitment success.	Altered abundance and composition of fish stocks
	Changes in fish migration and recruitment pattern	Altered abundance, composition and abundance of fish stocks. Fishermen forced to migrate more and expend more effort.
	Lower water availability	Conflict with other water users.

FACTORS	EFFECTS	IMPLICATIONS
Sea level rise	Loss of land	Loss of aquaculture.
	Changes to estuary systems	Shifts in species abundance, distribution and composition of fish stocks
	Salt water infusion into groundwater	Damage to capture fisheries. Reduced freshwater availability to a shift to brackish water species.
	Loss of coastal ecosystems such as mangrove forests.	Reduced recruitment and stocks for capture fisheries. Worsened exposure to waves and storm surge and inundation of potential areas.

Sea level rise (2.5 to 3.0 cm increase during last 50 years in Vietnam)

FACTORS	EFFECTS	IMPLICATIONS
Increase in frequency and/or intensity of storm	Large wave and storm surges. Flooding of potential areas.	Impact on recruitment and stock. Higher direct risk to fishermen and higher capital cost for infrastructure.
Draught	Lower water quality. Salinity changes	Loss of fish stocks. Lower productivity.
	Changes in river flow	Reduced fish stocks. Migration of fisherfolk.

FACTORS	EFFECTS	IMPLICATIONS
El Nino- Southern Oscillation	Changed location and timing of ocean currents and upwelling alters nutrient supply in surface waters and primary productivity.	Changes in the distribution and productivity of open sea fisheries
	Changed ocean temperature and bleached corals	Reduced productivity especially of reef fisheries
	Altered rainfall patterns brings flood and drought	Sea impacts for precipitation trends, drought and flooding.

DISCERNABLE RESPONSES TO CLIMATE CHANGE

- Extension of distributional boundary of small pelagics
- Extension of depth of occurrence and
- Phenological changes

Vivekanandan (2011)

EXTENSION OF DISTRIBUTIONAL BOUNDARY OF SMALL PELAGICS

Indian Oil Sardinella (Sardinella longiceps)

- Restricted distribution between latitude 8°N and 14°N and longitude 75°E and 77°E (Malabar upwelling zone along the southwest coast of India)
- Annual average sea surface temperature ranges from 27 to 29°C.
- Until 1985, almost the entire catch of oil sardine was from the Malabar upwelling zone
- The catch was very low or no catch from latitudes north of 14°N along the west coast

EXTENSION OF DISTRIBUTIONAL BOUNDARY OF SMALL PELAGICS

Indian Oil Sardinella (Sardinella longiceps)

- In the last two decades the catches from latitude above 14°N are increasing, contributing about 15% (2006)
- Surface waters of the Indian seas warming by 0.04 °C per decade
- Warmer tongue (27-28.5°C) of the surface waters is expanding to latitudes north of 14°N
- Enabling the oil sardine to extend their range to northern latitudes in both East and West coasts.

Distribution of Indian Oil Sardinella

CLIMATE RELATED EVENTS RESULTING IN INCREASED OIL SARDINELLAS PRODUCTION

EXTENSION OF DISTRIBUTIONAL BOUNDARY OF SMALL PELAGICS

Indian Oil Sardinella (Sardinella longiceps)

Although Indian oil sardinella fisheries seems to be an important component of the small pelagic fisheries of Pakistan. However, recent increased landings especially along Gwader coast may be attributed to climate change !!!

INDIAN OIL SARDINELLA FISHERIES-GWADER

EXTENSION OF DISTRIBUTIONAL **BOUNDARY OF SMALL PELAGICS** Indian mackerel (Rastrelliger kanagurta) Northwest coast of India 1961-1976 contributed about 7.5% 1997-2006 contributed about 18%

Northeast coast of India
 1961-1976 contributed about
 1997-2006 contributed about

0.4% 1.7% EXTENSION OF DISTRIBUTIONAL **BOUNDARY OF SMALL PELAGICS** Indian mackerel (Rastrelliger kanagurta) Southeast coast of India 1961-1976 contributed about 10.6% 1997-2006 contributed about 23.2% Southwest coast of India 1961-1976 contributed about

1997-2006 contributed about

81.3% 56.1%

Distribution Range of Indian Mackerel

1977-1986

INDIAN MACKEREL FISHERIES-GWADER

Indian mackerel (Rastrelliger kanagurta)-India

During 1985-89
 Pelagic gear contributed 98%
 Bottom trawler contributed 2%

During 2003-2007
 Pelagic gear contributed 85%
 Bottom trawler contributed 15%

Indian mackerel (*Rastrelliger kanagurta*)-Pakistan

100%

0%

During 1993-2004
 Pelagic gear contributed
 Bottom trawler contributed

During 2005-2013
 Pelagic gear contributed 88%
 Bottom trawler contributed 12%

Indian mackerel (Rastrelliger kanagurta)

- Two possibility:
 - mackerel are being displaced from the pelagic realm due to warming of the surface waters.
 - Sea bottom temperatures are increasing, therefore, the boundary of distribution to depths is increasing.
- Catch quantities of the mackerel from the pelagic gear are also increasing.
- It is vertical extension of distribution, and not a distributional shift.

HREADEN BREAM

inter .

PHENOLOGICAL CHANGES

Threadfin Bream (Nemipterus japonicus and N. mesoprion)

In 1980's percent occurrence of spawners

 Decreased during April-September (Warm Period) 40 % (29.0°C)

Increased in the October-March (Cool Period)
 60 %
 (29°C)

In 2000's percent occurrence of spawners

Decreased during April-September (Warm Period) 15 %
 (27.5°C)

Increased in the October-March (Cool Period) 85 % (28.0°C)

PHENOLOGICAL CHANGES

PHENOLOGICAL CHANGES

ECONOMIC EFFECTS OF CLIMATE CHANGE

- Production and marketing cost could increase
- Suying power and export decreases
- Danger from harsher weather conditions rise
- Small scale fishing communities face greater uncertainty as availability, access, stability and use of seafood and supplies diminish and work opportunities dwindle

ADAPTATION TO CLIMATE CHANGE IN FISHERIES

Concerns	Adaptive mechanism
Uncertainties of fish availability and	Develop knowledge base for climate change and fisheries and aquaculture
supply	Predict medium and long term probabilistic Production
	Assess the adaptation capacity, resilience and vulnerability of marine production systems
	Adjust fishing fleet and infrastructure capacity
	Consider the synergistic interactions between climate change and other issues such as overfishing and pollution.

Allison et al., 2004; Handisyde et al., 2005; FAO, 2008, Vivekanandan (2011)

ADAPTATION TO CLIMATE CHANGE IN FISHERIES

Concerns	Adaptive mechanism
New challenges for risk assessment	Consider increasing frequency of extreme weather events
	Consider past management practices to evolve robust adaptation systems
	Identify and address the vulnerability of specific communities
	Consider gender and equity issues

ADAPTATION TO CLIMATE CHANGE IN FISHERIES

Concerns

Complexities of climate change interactions into governance of frameworks to meet food Security

Adaptive mechanism

Recognition of climate-related processes and their interaction with others

Action plans at national level based on

- Code of Conduct for Responsible
 Fisheries
- Integrated ecosystem approach to fisheries and aquaculture management plans,
- Framework for expansion of aquaculture
- Linkage among cross-sectoral policy frameworks such as insurance, agriculture, rural development and trade
| Concerns | Adaptive mechanism |
|---|--|
| Complexities of
climate change
interactions into
governance of
frameworks to
meet food Security
(Cont.) | Action plans at regional level by Strengthening regional organizations
and place climate change agenda as a
priority Addressing trans-boundary recourse
use, Evolving common platforms and
sharing the best practices |
| | Action plans at international level by Linking with mitigation activities Enhancing co-operation and
partnerships, Applying international fishery
agreements. |

Concerns	Adaptive mechanism
Fisheries and aquaculture may be more vulnerable in conflicts with other sectors	Action plans should involve not only fisheries institutions/departments, but also those for national development planning and finance
	Sharing and exchange of information with other sectors
	Existing management plans for fisheries and aquaculture need to be reviewed and further developed by considering climate change

Concerns	Adaptive mechanism
Financing climate change adaptation and mitigation measures	Fishermen, processors, traders and exporters should increase self protection through financial mechanisms
	Improving equity and economic access such as microcredit should be linked to adaptation responses
	Investment on infrastructure, such as construction of fishing harbour, should consider climate change

Adaptive mechanism

Financing climate change adaptation and mitigation measures (Cont.) Financial allocation in national budget for risk reduction and prevention practices such as early warning systems and disaster recovery programmes and for relocation of villages from low lying areas

Incentive for reducing the sector's carbon footprint and other mitigation and adaptation options.

MISCONCEPTION !

Fisheries dependent activities, rather than climate change, are responsible for decline in fish catches

